ToO update from MIRO

Anthony Lethuillier¹, Paul von Allmen¹, Mark Hofstadter¹, Gerard Beaudin⁴, Nicolas Biver², Dominique Bockelee-Morvan², Mathieu Choukroun¹, Jacques Crovisier², Bjorn Davidsson¹, Pierre Encrenaz⁴, Therese Encrenaz², Margaret Frerking¹, Adeline Gicquel¹, Samuel Gulkis¹, Paul Hartogh⁵, Wing-Huen Ip⁶, Michael A. Janssen¹, Christopher Jarchow⁵, Seungwon Lee¹, Emmanuel Lellouch², Cedric Leyrat², Ladislav Rezac⁵, Peter Schloerb³, Thomas R. Spilker⁷

¹Jet Propulsion Laboratory/Calif. Inst. Tech., Pasadena, CÁ, United States. ²LESIA-Observatoire de Paris, Meudon, 92195, France. ³University of Massachusetts, Amherst, MA, United States. ⁴LERMA-Observatoire de Paris, Paris, 75014, France. ⁵Max-Planck-Institut für Sonnensystemforschung, Göttingen, 37077, Germany. ⁶National Central University, Taoyuan City, 32001, Taiwan. ⁷Solar System Science and Exploration, Los Angeles, CA, United States.

© 2017 California Institute of Technology. Government sponsorship acknowledged.

- 1. Context and Model
- 2. Results and Interpretations
- 3. Conclusions and Perspectives

The first ToO:

• Is Located in the Imhotep region of the comet.

Figure 1: NAVCAM image of the Imhotep region with indicated the 2014 and 2016 swaths. Copyright: ESA/Rosetta/NAVCAM

- 1. Context and Model
- 2. Results and Interpretations
- 3. Conclusions and Perspectives

The first ToO:

- Is Located in the Imhotep region of the comet.
- First observation: October 27th 2014 as a single swath.

Figure 1: NAVCAM image of the Imhotep region with indicated the 2014 and 2016 swaths. Copyright: ESA/Rosetta/NAVCAM

- 1. Context and Model
- 2. Results and Interpretations
- 3. Conclusions and Perspectives

The first ToO:

- Is Located in the Imhotep region of the comet.
- First observation: October 27th 2014 as a single swath.
- Second observation: July 9th 2016 as a raster scan.

Figure 1: NAVCAM image of the Imhotep region with indicated the 2014 and 2016 swaths. Copyright: ESA/Rosetta/NAVCAM

- 1. Context and Model
- 2. Results and Interpretations
- 3. Conclusions and Perspectives

The first ToO:

- Is Located in the Imhotep region of the comet.
- First observation: October 27th 2014 as a single swath.
- Second observation: July 9th 2016 as a raster scan.
- Objective: observe the same area twice with similar high spatial resolution.

Figure 1: NAVCAM image of the Imhotep region with indicated the 2014 and 2016 swaths. Copyright: ESA/Rosetta/NAVCAM

Measurements

- 1. Context and Model
- 2. Results and Interpretations
- 3. Conclusions and Perspectives

Figure 2: NAVCAM image of the Imhotep region with indicated the 2014 and 2016 swaths. Copyright: ESA/Rosetta/NAVCAM

Resolution	SMM	MM
October 2014	$\approx 20m$	$\approx 60 m$
July 2016	≈ 30 <i>m</i>	≈ 90 <i>m</i>

The 2016 raster scan intersected the 2014 swath a total of 14 times.

Thermal and radiative model

- 1. Context and Model
- 2. Results and Interpretations
- 3. Conclusions and Perspectives

Figure 3: Simplified thermal model of the subsurface of 67P/C-G, indicating the processes at play

Thermal and radiative model

- 1. Context and Model
- 2. Results and Interpretations
- 3. Conclusions and Perspectives

Best fitting parameters in 2014 and 2016

- 1. Context and Model
- 2. Results and Interpretations
- 3. Conclusions and Perspectives

Best fit for both times

160

- 1. Context and Model
- 2. Results and Interpretations

80

12

Thermal inertia of the subsurface

- 1. Context and Model
- 2. Results and Interpretations
- 3. Conclusions and Perspectives

Instrument	Region (date)	Thermal Inertia
MIRO ¹	All nucleus (2014)	10 - 50
MIRO ²	Imhotep and Ash (September 2014)	10 – 30
MUPUS ³	Abydos (November 2014)	50 — 120
MIRO ⁴	Imhotep ToO (September 2014)	80 — 95

 $^{^{1}}$ Gulkis et al. (2015) 2 Schloerb et al. (2015) 3 Spohn et al. (2015) 4 This work

Porosity of the subsurface

- 1. Context and Model
- 2. Results and Interpretations
- 3. Conclusions and Perspectives

Instrument	Depth sounded	Porosity
CONSERT ¹	Hundreds of meters	75 - 85%
SESAME-PP ²	First meter	< 50%
MIRO ⁴	10 cm	50 - 60%
MUPUS ³	Near surface	30 - 65%

 1 Kofman et al. (2015) 2 Lethuillier et al. (2016) 3 Spohn et al. (2015) 4 This work

- 1. Context and Model
- 2. Results and Interpretations
- 3. Conclusions and Perspectives

 The model used in this work offers a powerful tool to investigate the subsurface of 67P/C-G using MIRO data and can help constrain the composition of the subsurface and its evolution through time.

- 1. Context and Model
- 2. Results and Interpretations
- 3. Conclusions and Perspectives

- The model used in this work offers a powerful tool to investigate the subsurface of 67P/C-G using MIRO data and can help constrain the composition of the subsurface and its evolution through time.
- More parameters need to be investigated in order to better fit the measurements of the Imhotep ToO.

- 1. Context and Model
- 2. Results and Interpretations
- 3. Conclusions and Perspectives

- The model used in this work offers a powerful tool to investigate the subsurface of 67P/C-G using MIRO data and can help constrain the composition of the subsurface and its evolution through time.
- More parameters need to be investigated in order to better fit the measurements of the Imhotep ToO.
- For this a MCMC algorithm will be used in future work.

- 1. Context and Model
- 2. Results and Interpretations
- 3. Conclusions and Perspectives

- The model used in this work offers a powerful tool to investigate the subsurface of 67P/C-G using MIRO data and can help constrain the composition of the subsurface and its evolution through time.
- More parameters need to be investigated in order to better fit the measurements of the Imhotep ToO.
- For this a MCMC algorithm will be used in future work.
- MIRO made observations of Imhotep at other times, and these will be included in future studies.

